Circuit Modelling and Eigenfrequency Analysis of a Poly-Si Based RF MEMS Switch Designed and Modelled for IEEE 802.11ad Protocol

نویسندگان

  • Tejinder Singh
  • Farzaneh Pashaie
چکیده

This paper presents the equivalent circuit modelling and eigenfrequency analysis of a wideband robust capacitive radio frequency (RF) microelectromechanical system (MEMS) switch that was designed using Poly-Si and Au layer membrane for highly reliable switching operation. The circuit characterization includes the extraction of resistance, inductance, on and off state capacitance, and Q-factor. The first six eigenfrequencies are analyzed using a finite element modeler, and the equivalent modes are demonstrated. The switch is optimized for millimeter wave frequencies, which indicate excellent RF performance with isolation of more than 55 dB and a low insertion loss of 0.1 dB in the V-band. The designed switch actuates at 13.2 V. The R, L, C and Q-factor are simulated using Y-matrix data over a frequency sweep of 20–100 GHz. The proposed switch has various applications in satellite communication networks and can also be used for devices that will incorporate the upcoming IEEE Wi-Fi 802.11ad protocol. Category: Smart and intelligent computing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation

According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...

متن کامل

طراحی، شبیه‌سازی و ساخت سوئیچ خازنی RF MEMSبر روی بستر آلومینا

In this paper, design, analysis and fabrication of a low loss capacitive RF MEMS shunt switch, which made on the coplanar waveguide transmission line and alumina substrate in the frequency band of 40-60 GHz, is presented. The CPW is designed to have 50Ω impedance matching on the alumina substrate. Then the desired switch is designed with appropriate dimensions. Afterward the important par...

متن کامل

Microwave modelling of radio frequency microelectromechanical rotary switches

In this study, both full 3D electromagnetic and equivalent circuit modelling of a radio frequency microelectromechanical systems (RF MEMS) single-pole eight-throw rotary switch are reported for the first time. Excellent agreement has been achieved between measurements and modelled performance for frequencies up to 12 GHz. In order to validate the effectiveness of the modelling, a 2-bit true tim...

متن کامل

Second Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch

This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...

متن کامل

15. RF MEMS and Si-Micromachining inHigh-Frequency Circuit Applications

RF MEMS (micro-electromechanical systems) and Si-micromachining have been identified as technology areas that have the potential to provide a major impact on existing system architectures in sensors and communications. These technologies should reduce weight, cost, size, and power dissipation by a few orders of magnitude. Key MEMS devices for current RF architectures are switches in radar syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCSE

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014